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We report the results of an inviscid spatial stability calculation for a compressible 
reacting mixing layer. The limit of infinite Damkohler number is taken and the 
diffusion flame is approximated by a flame sheet. Results are reported for the phase 
speeds of the neutral waves and maximum growth rates of the unstable waves as a 
function of the parameters of the problem: the ratio of the temperature of the 
stationary stream to that of the fast stream, the Mach number of the fast stream, the 
heat release per unit mass fraction of the reactant, the equivalence ratio of the 
reaction, and the frequency of the disturbance. These results are compared to the 
phase speeds and growth rates of the corresponding non-reacting mixing layer. We 
show that the addition of combustion has important, and complex, effects on the flow 
stability. In  particular, we show that the flow can become absolutely unstable with 
a sufficient amount of heat release. 

1. Introduction 
Quite recently i t  has been realized that an understanding of the stability 

characteristics of compressible mixing layers is extremely important in view of the 
projected use of the scramjet engine for the propulsion of hypersonic aircraft. For 
example, Drummond & Mukunda (1988) state: ‘Even though the combustor flow 
field is quite complex, it can be realistically viewed as a collection of spatially 
developing and reacting supersonic mixing layers that are initially discrete, but that 
ultimately merge into larger more complex zones. These mixing layers begin 
downstream of a set of fuel injectors that introduce gaseous hydrogen in both a 
parallel and transverse direction into a supersonic airstream entering from the engine 
inlet. The behaviour of the initial portion of the combustor flow, in the mixing layers 
near the fuel injectors, appears to be most critical, since this is where the mechanism 
for efficient high speed mixing must, be established to achieve the required degree of 
combustion downstream. Because of the structure of the flow field in this initial 
portion of the combustor, a single supersonic, spatially developing and reacting 
mixing layer serves as an excellent physical model for the overall flow field.’ Thus, 
knowledge of the stability characteristics may allow one, in principle, to control the 
downstream evolution of such flows in the combustor. This is particularly important 
because of the observed increase in the flow stability a t  high Mach numbers (Brown 
& Roshko 1974; Chinzei et al. 1986; Papamoschou & Roshko 1986, 1988). Because.of 
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the increase in stability, natural transition may occur at downstream distances 
which are larger than practical combustor lengths. A number of techniques which 
may enhance mixing are discussed by Kumar, Bushnell & Hussaini (1987). A detailed 
understanding of the linear stability characteristics of compressible reacting mixing 
layers will be of aid in mixing enhancement. 

Despite the fact that understanding of the flow field in a reacting compressible 
mixing layer in a scramjet engine is extremely important, there appear to be very few 
studies of the stability of such flows. Menon, Anderson & Pai (1984) studied the 
inviscid spatial stability of a compressible wake in which there was a H,-0, reaction. 
These calculations were carried out with a free-stream Mach number of 2 and 
temperature of 1500K. When the reaction was turned on, the flow became 
completely unstable. The phase speed was found to be a monotonically increasing 
function of frequency. It seems that their results show a complete absence of neutral 
or stable disturbances. 

The above result appears to be in conflict with that of Drummond & Mukunda 
(1988). They carried out a numerical simulation using the two-dimensional, 
compressible, time dependent Navier-Stokes equations with combustion in a mixing 
layer. The reaction was the burning of a 10% H,, 90 % N, fuel in air. The free-stream 
Mach number was taken to be 2, the temperature above and below the plate was 
2000 K, and the velocities were 2672 m/s and 1729 m/s above and below the plate, 
respectively. Because of the expense and difficulty of carrying out these simulations 
only a few have been done. Drummond & Mukunda found that the non-reacting flow 
was very stable and that turning on the combustion had little effect. But i t  should 
be noted that the authors were not carrying out a stability calculation, per se, and 
did not excite the flow with disturbances with a fixed frequency. They relied on 
‘natural ’ disturbances to perturb the flow. 

Recently, Hermanson & Dimotakis (1989) carried out an experimental study of 
the effect of heat release in a turbulent shear layer at low subsonic speeds. Among 
their findings were that the growth rate of the layer decreases slightly with increasing 
heat release. McMurtry, Riley & Metcalfe ( 1989) carried out three-dimensional, time 
dependent simulations of a reacting mixing layer in the zero-Mach-number limit. 
Similarly, they found that increasing the heat release led to a decrease in the growth 
rate of the mixing layer. 

We have begun a systematic study of the stability of compressible mixing layers 
in which a diffusion flame is embedded. The basic steady flow with which we began 
is that calculated by Jackson & Hussaini (1988). In  their study the limit of infinite 
activation energy was used and the diffusion flame reduced to a flame sheet. The 
flame sheet model is a standard approximation and has been used in the study of the 
burning of a fuel particle in an oxidizing atmosphere and of the flame a t  the mouth 
of a tube, for example (Buckmaster & Ludford 1982; Williams 1985). In order to 
understand the effect of the chemical heat release on the stability of this flow, one 
must first understand the stability characteristics of the non-reacting flow. 

In  the first part of our study (Jackson & Grosch 1989, hereinafter referred to as 
Part l ) ,  we considered the inviscid spatial stability problem for the compressible 
mixing layer with the mean velocity profile approximated by the hyperbolic tangent. 
We found that there is only a single subsonic neutral mode for two-dimensional 
waves, but that there can be three for three-dimensional waves. Beyond a critical 
Mach number M,, the Mach number a t  which the phase speed equals that of a sonic 
wave, the subsonic neutral modes are transformed into supersonic neutral modes 
which are subsonic a t  one boundary and supersonic a t  the other (we have not found 
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any neutral or unstable modes which are supersonic at both boundaries). I n  addition, 
another supersonic neutral mode appears a t  M ,  2 M,, the Mach number at  which the 
sonic speeds of the stationary and moving streams are equal. This supersonic neut,ral 
mode has the opposite behaviour to the previous one at the boundaries. That is, if 
the continuation of the subsonic neutral mode is supersonic in the moving stream and 
subsonic in the stationary stream, this new mode is subsonic in the moving stream 
and supersonic in the stationary stream. Thus, there are always at least two bands 
of unstable frequencies for Mach numbers greater than M,. One of these bands is a 
group of fast and the other a group of slow unstable supersonic modes. The fast 
modes are supersonic with respect to the stationary stream and the slow modes are 
supersonic with respect to  the moving stream. It is important to note that both the 
fast and slow supersonic modes are vorticity modes and neither of them is an acoustic 
mode (Mack 1989). These groups of unstable modes lie in the frequency bands 
between zero, corresponding to the sonic mode, and the frequency of the supersonic 
neutral mode. Because these frequency bands always overlap for some range of 
frequencies, there exist two unstable modes a t  a fixed Mach number and PT (the ratio 
of the temperature in the stationary stream to that of the moving stream) for every 
frequency in this range. The phase speeds of both the fast and slow supersonic modes 
have a small range about the average, so that little dispersion of wave packets is 
expected, with a reduction in the dispersion as the Mach number is increased. Three- 
dimensional disturbances show the same general characteristics as two-dimensional 
disturbances. There is always a range of propagation angles for which both the fast 
and slow unstable modes exist. We also find, in agreement with previous studies, that 
the maximum growth rate for any PT and M occurs for three-dimensional waves. A 
decrease in PT results in an increase in the growth rate of the unstable waves a t  any 
Mach number. An increase in the Mach number a t  a fixed PT results in a decrease of 
the growth rates by a factor of five to ten, until the Mach number equals M,. For 
Mach numbers greater than M,, the growth rates of all modes level off and then, with 
increasing Mach number, those of the slow modes begin to increase while those of the 
fast modes approach a limiting value. However, even at Mach 10, the growth rates 
of the slow modes are still small compared to those a t  low subsonic speeds. This, 
combined with the fact that the unstable waves have little dispersion, is a possible 
mechanism responsible for the observed increase in the flow stability. 

In  this paper we report results of a study of the stability of a reacting compressible 
mixing layer. I n  $ 2  we give the basic equations governing the mean flow and the 
small amplitude disturbance equations. The boundary conditions and the numerical 
method are also discussed in this section. Section 3 contains a presentation of our 
results and conclusions are given in $4. 

2. The mean flow 
The non-dimensional equations governing the steady two-dimensional flow of a 

compressible, reacting mixing layer which lies between streams of reactants with 
different speeds and temperatures are given by (Jackson & Hussaini 1988) 

(PV),+ ( P V ,  = 0, 1 = p T ,  (2.1 a ,  b) 

(2.1 c )  P(UU, + VU,) = (PU,),> 

P(U% + VT,) = (PUT,), + (7- 1)WPu2,  +Pa> (2.1 d )  

p(UFj,+ V$,) = (pq,,,-pjL(2 (j = L2). (2 . le)  
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I n  these equations the x-axis is along the direction of flow, the y-axis is normal to the 
flow, U and V are the velocity components in the x- and y-directions, respectively, p 
is the density, T the temperature, Fl and Fz the mass fractions, and R is the reaction 
rate. The viscosity p is given by Chapman's linear viscosity law. The other non- 
dimensional parameters appearing above are : 

B = QF,., CW/C, T,(l;, -,kl) W, 

Pi = (Cj-kj) Y./(l;, -,k,) W, 

Heat release per unit mass fraction of reactant, 

Parameter involving stoichiometry, 

M = U J u ,  Mach number, 

where i j  is the stoichiometric coefficient for species j appearing as a reactant, bj the 
stoichiometric coefficient for species j appearing as a product, l; the sum of the 
stoichiometric coefficients of the reactants, y. the molecular weight of species j, W 
the average molecular weight, a ,  the speed of sound referred to T,, Q the chemical 
heat release per unit mass, y the specific-heat ratio, and finally C, the specific heat 
a t  constant pressure. The equations were non-dimensionalized by the free-stream 
values T,,p,, U,, Fl, , for the temperature, density, velocities and mass fractions, 
respectively. Lengths are referred to some characteristic lengthscale of the flow. We 
have assumed unit Prandtl and Lewis numbers in writing down these equations. The 
assumption of unit Lewis number allows us to consider linear combinations of ( 2 . 1 4  
and (2.1 e )  to eliminate the source term, which then admits similarity-type solutions. 
For a simplified hydrogen-oxygen reaction, typical values of the heat release 
parameter /3 as a function of the temperature of the fast stream are given in table 1 .  
Note that as the temperature of the fast stream is increased, P is decreased. 

The boundary conditions consistent with ( 2 . 1 )  are 

T = U = F , = l ,  F 2 = 0  asy-too, ( 2 . 2 a )  

(2 .2b )  

If PT is less than one, the slow gas is relatively cold compared to the fast stream, and 
if PT is greater than one it is relatively hot. 

(2.3) 
P 

P 2  

The linear combinations 
T + P F 1 ,  T+-F2, 

satisfy pure heat equations everywhere, which admit similarity type solutions. 
Combining ( 2 . 1 4  and (2 . l e ) ,  and using the boundary conditions ( 2 . 2 ) ,  one finds 

(2.4b) 
where y5 is the equivalence ratio, defined by 

which is the ratio of the mass fraction Fl in the fast stream to the mass fraction F, 
in the slow stream divided by the ratio of their molecular weights times their 
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T m  c, Q;W/;, W, 
(OK) (cal/mole "K) (kcal/mole) P 
1000 9.03 516.5 3.2 
1500 9.94 516.5 1.9 
2000 10.60 516.5 1.4 

TABLE 1. Typical values of the heat release parameter ,8 as a function of temperature 

stoichiometric coefficients. Note that if $ = 1, then the mixture is said to be 
stoichiometric, and if $ > 1 it is Fl rich, while if $ < 1 it is Fl lean. 

A thin diffusion flame exists within the mixing layer and is characterized by near- 
equilibrium conditions ; Fl = 0 on one side of the flame and F, = 0 on the other. In  
the limit of infinite Damkohler number this thin diffusion flame reduces to a flame 
sheet and from the relations (2.4), we see that the flow can be described by 

( 2 . 6 ~ )  

(2 .7a)  

u-Pu ( 2 . 7 b )  

for y < y,. Here, y f  gives the location of the Aame sheet where both reactants vanish, 
and T takes the adiabatic flame value T,, given by 

T,=PT+(l-PT+P) + a(? - 1) W (  u, - pu) ( 1 - Uf) , (2.8) 

and (2.9) 

defines the flame location. Note that the flame location is independent of PT and 
Mach number. 

The temperature and mass fraction profiles for the steady mean flow have been 
obtained in terms of the mean flow velocity distribution, U(y) .  As discussed in Part 

(2.10) 

where q is the similarity variable and the Howarth-Dorodnitzyn transformation has 
been used. This profile satisfies the boundary conditions 

U+1 asq++co,  U + P , < 1  a s q + - w .  (2.11) 

The basic mean flow considered here is thus given by (2.6), (2.7), and (2.10). 
In  figure 1 (a )  we show plots of T(q) for PT = 2, pv = 0, M = 0, 4 = 1 and for 

various values of the heat release parameter P. If /3 is different from zero, the 
temperature always has a discontinuity in its slope a t  the location of the flame sheet. 



396 

I I 

T. L .  Jackson and C .  E. Grosch 

I I J 

= T  

4 -4  11 



Inviscid spatial stability of a compressible mixing layer. Part 2 397 

Figure 1 (b)  shows plots of T for PT = 2, Pu = 0, P = 2, M = 0, and for various values 
of 4. When 4 = 1, the flame sheet is located a t  7f = 0. For 4 > 1, the mixture is Fl 
rich and the flame location shifts to yr < 0. For 4 < 1, the converse is true. Finally, 
figure l f c )  shows T for various values of the Mach number. As can be seen from 
(2.6)-(2.8), increasing M increases T. It should be noted that an increase in p at fixed 
M has a qualitatively similar effect on T as an increase in M a t  a fixed p. 

The flow field is perturbed by introducing two-dimensional wave disturbances in 
the velocity, pressure, temperature, density and mass fractions on either side of the 
flame sheet with amplitudes which are functions of 7. In  addition, the flame sheet 
location must also be perturbed with a wave disturbance. For example, the pressure 
perturbation is 

p = 17(~) exp [~(ux-w~)] ,  (2.12) 

with l7 the amplitude. Here, for spatial stability a is complex. The real part of a is 
the wavenumber in the x-direction, while the imaginary part of a indicates whether 
the disturbance is amplified, neutral, or damped depending on whether ai is negative, 
zero, or positive assuming positive group velocity. The frequency o is taken to  be 
real. Substituting the expression (2.12) for the pressure perturbation and similar 
expressions for the other flow quantities into the inviscid compressible equations 
yields the ordinary differential equations for the perturbation amplitudes. It is 
straightforward to derive a single equation governing n, given by 

17'-azT[T-M2(U-c)2]17 = 0, 
2u' r-- 
u-c (2.13) 

which is valid on either side of the flame sheet. Here, e is the complex wave velocity 

c = w / a ,  (2.14) 

and primes indicate differentiation with respect to the similarity variable 7. The 
phase speed, cph, is given by w/a,. For a neutral wave the phase speed will be denoted 

The boundary conditions for 17 are obtained by considering the limiting form of 

17 + exp ( k a,  7) 9 (2.15) 

where = a 2 [ 1 - M 2 ( 1 - c ) 2 ] ,  521 = azPT[PT-M2((PU-c)2]. (2.16) 

Let us define c+ - to be the values of the phase speed for which 52; vanishes. Thus, 

by CN. 

(2.13) as v+k 00. The solutions to (2.13) are of the form 

1 ( P T 9  c+ = 1---, c- =pui---. 
M M 

(2.17) 

Note that c+ is the phase speed of a sonic disturbance in the fast stream and c- is the 
phase speed of a sonic disturbance in the slow stream. At 

(2.18) 

c+ are equal. In  addition to  the boundary conditions at 7 = & 00, we must impose the 
conditions that 17 and lT are continuous across the flame sheet. 

The nature of the disturbances and the appropriate boundary conditions can now 
be illustrated by reference to figure 2, where we plot c* versus M for a typical value 
ofp, and Pu. I n  what follows we assume that a; > at. These curves divide the c,-M 
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Fast modes 
subsonic 7 = co 

2 supersonic 7 =-a 

Supersonic-supersonic 

supersonic 7 = co 
subsonic 7 = - co 

0 5 10 
M 

FIGURE 2. Plot, of the sonic speeds c? versus Mach number for p, = 3.5. 

plane into four regions, where c, is the real part of c. If a disturbance exists with a 
M and c, in region 1, then 52: and 522 are both positive, and the disturbance is 
subsonic at both boundaries, and we classify it as a subsonic mode. In region 3, both 
52; and 521 are negative and hence the disturbance is supersonic at both boundaries, 
and we classify it as supersonic-supersonic mode (or a doubly supersonic mode, the 
terminology of Macaraeg & Streett 1989). In  region 2,  52: is positive and 522 is 
negative, and the disturbance is subsonic at + co and supersonic at - CO, and we 
classify it as a fast mode. Finally, in region 4, fzt is negative and 52: is positive so the 
disturbance is supersonic at + 00 and subsonic at - co, and we classify it as a slow 
mode. 

One can now see that the appropriate boundary condition for either damped or 
outgoing waves in the fast and slow streams are, respectively, 

17+exp(-52+v) ifc,> c,, 17+exp(-iv(-SZ;)$) i f c ,<c+ ,  ( 2 . 1 9 ~ )  

Zhexp(52-11) ifc, < c-, 1 7 + e x p ( - i ~ ( - 5 2 ~ ) ~ )  ifc, > c-. (2.19b) 

To solve the disturbance equation (2.13), we first transform it to a Riccati equation 
by setting 

(2.20) 

Thus, (2.13) becomes 

G' + ctTP - (z -c) G = a[T -M2( U -  c)']. (2.21) 
U-c T 

The boundary conditions can be found from (2.19) and (2.20), with G continuous 
across the flame sheet. 

The stability problem is thus to solve (2.21) for a given real frequency w and Mach 
number M ,  with U and T defined by (2.10) and (2 .66) ,  (2.7b). In addition to M ,  the 
important parameters of this problem are pu, P T ,  p, and q5. The eigenvalue is the 
wavenumber a. Because this equation has a singularity at U = c N ,  we shall integrate 
it along the complex contour ( -6 ,  - 1 )  to (yf, 0) and (6, - 1) to (v,, 0), where vf gives 
the flame sheet location defined by (2.9). Using a Runge-Kutta scheme with variable 
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FIGURE 3. Plot of S(7) for /3, = 2, p =  0.5,1,2,  4 = 1 ,  and M = 0. 

step size, we choose an initial a and compute the boundary conditions from (2.19). 
We then iterate on a, using Muller's method, until the boundary conditions are 
satisfied and the jump in G a t  (rf, 0) is less than lop6. All calculations were done in 
64-bit precision. 

3. Results 

1, 2 ; and 0 < M < 10. In addition, we have taken /Iu = 0 unless otherwise stated. 
In all of our calculations we have taken y = 1.4 ; PT = 0.5, 1 , 2  ; 0 < P < 5 ; 9 = 0.5, 

The Lees & Lin (1946) regularity condition is given by 

Let re be a root of S(7) ,  and define F = U(vC) .  If E lies in region 1 of the c, -M diagram 
(figure 2), then Lees & Lin have shown that, provided a $; 0, F = cN is the phase speed 
of a true neutral mode. The corresponding neutral wavenumber, aN, must be 
determined numerically. The eigenfunction is called a subsonic neutral mode. If 13 lies 
in regions 2 ,  3, or 4 of the c,-M diagram, then F does not correspond to the phase 
speed of a true neutral mode. The phase speeds in these regions must be found 
numerically. In addition to the neutral modes with a + 0 there may exist neutral 
modes having zero wavenumber. These may exist in any of the four regions of figure 
2. The phase speeds of such modes do not satisfy (3.1) and must be found 
numerically. In this zero wavenumber case, the amplitude of the V perturbation 
eigenfunction is U-c,  or in terms of the pressure perturbation, 17 = constant. The 
correct value of c is not arbitrary but is found numerically in the limit a + 0, w + 0. 
These modes do not exist in the non-reactive case, but do exist when the flame sheet 
is present. 

Because T' is discontinuous a t  yf for non-zero p, S(7)  will also be discontinuous a t  
this point. Figure 3 is a plot of S versus 7 for various values ofp. As one can see from 
examination of this figure, S can have a single root, two roots one of which 
corresponds to 7 positive and the other negative, or two roots one of which is a one- 
sided zero. The roots of S, which corresponds to phase speeds that are subsonic a t  
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0.98 

-a, 

1 1 1 1 1 1 1 1 I I I  

0 1.5 a, 

1 

- ai 

0 0.4 
a, 

FIQURE 4(a,b) .  For caption see facing page. 

both boundaries, are the phase speeds of subsonic neutral modes. The one-sided zero 
of S may or may not yield a phase speed of a neutral mode. 

3.1. M =  0 
The introduction of a chemical reaction, in the form of a flame sheet, has complex 
effects on the flow stability. In order to show these effects clearly, we first consider 
the case of zero Mach number and examine the variation of the eigenvalue, a,  with 
the heat release parameter ,8 and equivalence ratio q5. In figure 4(a)  we show a plot 
of the growth rate ( -ai) versus the real part of the wavenumber (ar) for the case of 
PT = 0.5, q5 = 1 ,  and various values of p. Note that all of the curves pass through the 
origin, which corresponds to w = 0, and also cross the a, axis, corresponding to 
w > 0. These give the two neutral modes. The phase speed corresponding to o = 0, 
a = 0 does not correspond to a root of (3.1), while the phase speed corresponding to 
w > 0 is that of a subsonic neutral mode (whose phase speed is given by the Lees & 
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-0.12 I I I I I I I 
0 1.5 

P 
FIGURE 4. (a) Plot of the growth rate ( -ai) versus the real part of the wavenumber (a,) for /?, = 
0.5, /? = 0,0.5,0.9,0.98, # = 1, and M = 0. (b)  Plot of the growth rate ( -ai) versus the real part of 
the wavenumber (a,) for /?, = 0.5, $ = 1, M = 0, and various values of p about the saddle-point 
location. (c) Plot of the curves separating regions of absolute and convective instability in the 
/?,-/? plane for Mach numbers of 0,  0;  0 ,  0.5; A, 1.0 with q5 = 1. 

Lin regularity condition (3.1)). Note that the stability curves of the unstable modes 
are found between two neutral modes. 

The curves shown in figure 4(a) are for values of /3 < 0.98. For this particular set 
of parameter values we were not able to find solutions to the stability problem whose 
eigenvalues had the behaviour shown in this figure for any values of /? > 0.983. In 
order to understand the reason for this we carried out an extensive search for 
eigenvalues in the a-plane while varying /3. We discovered that the eigenvalue 
problem has a saddle point in the a-plane. Figure 4 ( b )  shows the region about the 
saddle point, which occurs for /3 about 0.984 at  a 5 0.24-0.60i. For ,8 < 0.984 there 
are two sets of eigenvalue curves. The lower set yields the eigenvalue relation for the 
non-reacting mixing layer as B approaches zero. For /3 > 0.984 there are also two 
other sets of eigenvalue curves. 

Huerre & Monkewitz (1985) have pointed out that an occurrence of a saddle point 
may be related to a transition from convective to absolute instabi1ity.t If such a 
transition occurs the spatial stability theory is no longer appropriate and temporal 
calculations are now required. In the non-reacting case, Huerre & Monkewitz (1985) 
have shown that the incompressible mixing layer is convectively unstable for pv non- 
negative. This result was extended to the subsonic compressible case by Pavithran 
& Redekopp (1990) and Jackson & Grosch (1990) independently. We have extended 
this analysis to include the flame sheet model. Our results are shown in figure 4(c)  
wherein we plot the locus of the branch point position separating the regions of 
absolute and convective instability in the pu - p  plane for various Mach numbers. In 
the region above each curve the flow is convectively unstable while in the region 
below the flow is absolutely unstable. One can see from this figure that the transition 

t We wish to thank P. A. Monkewitz, who suggested that the branch point might be connected 
to a transition from convective to absolute instability. 
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PT 0.5 1 .o 2.0 

0.5 0.7 0.984 1.8 
1 .o 2.0 3.1 >5  
2.0 > 5  > 5  > 5  

TABLE 2. Typical values of P, at M = 0 and Bu = 0 as a function of 8, and q5 

from convective to absolute instability, at Pu = 0, occurs a t  P M 0.984 a t  zero Mach 
number. This value of /3 corresponds to  the saddle point value found in figure 4 ( b )  
mentioned above. Thus the lower set of branches corresponds to the instability wave 
downstream of a time harmonic concentrated source, while the other branches (those 
existing with /3 > 0.984) represent the upstream influence of the source. This is also 
present in the homogeneous mixing layer as shown by Huerre & Monkewitz (1985). 
Finally, as the Mach number increases the critical value of /3 increases at any BU. 
Most importantly, however, we note that the flow can be made absolutely unstable 
without any reversed flow for sufficiently large heat release. 

We have found similar behaviour in the eigenvalue spectrum for other values of 
the parameters, for example, at PU = 0 there is a critical value of P (p,) beyond which 
transition from convective to absolute instability occurs. This value of p, depends on 
all of the other parameters of the problem, and the general trends are similar. Typical 
values of /3, are given in table 2 as a function of PT and 9. As PT is increased, p, also 
increases for fixed q5. As r$ is increased, P, also increases for fixed PT. Thus it is 
possible to induce absolute instability by either increasing the heat release parameter 
p, or by decreasing the equivalence ratio 9 (i.e. lean mixtures), holding all other 
parameters fixed. In  the remainder of this paper we only present results for modes 
which are convectively unstable. 

3.1.1. Neutral modes 

In figures 5 ,  6 and 7 we show the variation of the neutral phase speeds cN with /3 
for various values of PT and 4. First, recall that for the non-reactive case (Part l ) ,  
with P = 0 and 9 = 1, only a single subsonic neutral mode exists a t M  = 0, given by 
(3.1). We will show that the addition of heat release (p > 0) can cause multiple 
subsonic neutral modes to coexist, although the multiplicity may not always exist for 
all values of p. The original terminology from Part 1 was that ‘fast’ modes 
correspond to those found in region 2 of figure 2,  and that ‘slow’ modes correspond 
to those found in region 4. We want to preserve this terminology in the current study. 
Since the flame sheet introduces several neutral modes in the subsonic region (region 
l),  we need to label these in such a way as to be consistent with the labelling for 
regions 2 and 4. To this end, ‘fast’ modes now correspond to phase speeds cN > + in 
the subsonic region and their continuation into region 2, and similarly for the ‘slow ’ 
modes. 

It can be shown from (3.1), and from (2.66), ( 2 . 7 b )  and (2.10), that fast subsonic 
neutral modes only exist for 

with corresponding neutral phase speed 

(3.2) l - P T $ ,  

(3.3) 
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FIGURE 5.  (a )  Plot of neutral phase speeds c, versus p for p, = 0.5,  q5 = 0.5, and M = 0. ( b )  Plot of 
neutral phase speeds c, versus p for p, = 0.5, q5 = 1, and M = 0. (c) Plot of neutral phase speeds 
cN versus p for /3, = 0.5, q5 = 2, and M = 0. 
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FIGURE 6. ( a )  Plot of neutral phase speeds cN versus /l for BT = 1, q5 = 0.5, and M = 0. (b)  Plot of 
neutral phase speeds cw versus /3 for /3, = 1, 4 = 1, and M = 0. (c) Plot of neutral phase speeds c, 
versus /3 for /l, = 1, q5 = 2, and M = 0. 
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FIGURE 7. (a) Plot of neutral phase speeds cN versus /3 for /3, = 2, q5 = 0.5, and M = 0. ( b )  Plot of 
neutral phase speeds cN versus p for PT = 2, q5 = 1, and M = 0. (c )  Plot of neutral phase speeds cN 
versus /? for j3, = 2, 9 = 2 ,  and M = 0. 
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P a B T # - 1 )  

with corresponding neutral phase speed 

PT 

1 + P + P T '  
CN = 

(3.4) 

(3.5) 

Note that the value of the slow subsonic neutral phase speed is independent of the 
equivalence ratio 4.  Also, note, from (3.2) and (3.4), that  there is a mode switch 
located a t  P = 0 and # = pT1; i.e. the modes interchange their characteristics a t  

The phase speeds of the neutral modes for PT = 0.5 are plotted in figure 5. Note 
that there are both fast and slow subsonic neutral modes whose phase speeds are 
given by (3.3) and (3.5). In  addition to these subsonic neutral modes, there are 
adjacent neutral modes whose phase speeds are not given by (3.3) or by (3.5). These 
neutral modes are present because of the flame sheet, and for this reason we will call 
them 'flame sheet neutral modes'. They are characterized by having zero frequencies 
and zero wavenumbers. Their phase speeds are found numerically in the limit process 
a -+ 0. The phase speeds of one of these flame sheet modes was found to be cN = U ( T ~ ) ,  
and so we classify it as the primary flame sheet neutral mode (denoted by FSP in the 
figures). The other flame sheet neutral mode always has the phase speed value which 
existed at p = 0, and we call this the secondary flame sheet neutral mode (denoted 
by FSS in the figures). For both the FSP and the FSS, their phase speeds are 
independent of p. As will be shown later, they are also independent of the Mach 
number. This is due to the fact that the flame location T~ is also indcpendent of PT 
and M .  In  either case, the eigenfunction structure is given by n= constant. Curves 
of the phase speed of the neutral modes are only shown for those values of for which 
the corresponding unstable modes are convectively unstable. It is clear from the 
results shown here and in figure 4 that it is the slow modes which becomes absolutely 
unstable when /3 > p, and that p, increases with increasing values of the equivalence 
ratio $. The fast modes, on the other hand, only exist for those values of p which 
satisfy (3.2). From figure 5(c) one can see that there will be a mode switch for 4 > 
2 a t  ,8 = 0. The phase speeds of the neutral modes for PT = 1 are plotted in figure 6. 
Again we see that there are both fast and slow subsonic neutral modes with adjacent 
flame sheet neutral modes. Note that there is a mode switch at /3 = 0 as q5 is increased 
past one. That is, for q5 < 1, only the slow modes exist at p = 0, and conversely for 
q5 > 1. As for the case of PT = 0.5, only the slow modes undergo the transition from 
convective to absolute instability a t  /3 = p,. Finally, figure 7 shows the variation of 
the phase speed with /3 for PT = 2. The mode switch occurs when # exceeds 0.5. It 
is clear that  Pc is greater than 5 for all values of q5 for which results are shown here 
and thus there is no transition from convective to absolute instability in this range 
of parameters. 

3.1.2. Unstable modes 

I n  addition to the neutral modes there are, of course, associated unstable modes. 
The maximum growth rates of the unstable modes for various values of PT and ip are 
plotted as a function of P in figures 8-10. It is important to note the changes of scale 
between these figures. 

In  figure 8 the variation of -aimax with p is shown for PT = 0.5 and 4 = 0.5,1,2.  
The slow modes are much more unstable than the fast modes for those ranges of p 

p = o .  
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FIQURE 8. Plot of maximum growth rates of the fast and slow modes versus B for p, = 0.5, 
$ = 0.5,1,2,  and M = 0. 
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FICXRE 9. Plot of maximum growth rates of the fast and slow modes versus /3 for p, = 1 ,  
$ = 0.5,1,2,  and M = 0. 

for which the slow modes are convectively unstable, i.e. p < p,. The maximum 
growth rates of these slow modes first decrease slightly and then increase with an 
increase in p. The maximum growth rates of the fast modes increase with q5 for any 
p but are much smaller than those of the slow modes. Similar results are shown in 
figure 9 for PT = 1. The switching between fast and slow modes past $ = 1 which was 
noted in our discussion of the phase speeds of the neutral modes is apparent in this 
figure. The growth rates of the fast waves increase with g5, while those of the slow 
waves decrease. Finally the plots of the maximum growth rate versus p for /IT = 2, 
shown in figure 10, have the same general behaviour as the two previous figures. That 
is, there is a mode switch at p = 0 past q5 = a. 

The results shown in these figures can be summarized as follows. An increase in PT 
cauws a decrease in the maximum growth rate of the most unstable modes. At fixed 
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FIGURE 10. Plot of maximum growth rates of the fast and slow modes versus p for p, = 2 ,  
q5 = 0.5, 1 .2 ,  and M = 0. 

PT and q5 the growth rate of the slow modes increases as P becomes large as long as 
the flow is convectively unstable, while the growth rate of the fast modes approaches 
a limiting value. As we shall see, this is the same generic behaviour as results from 
increasing the Mach number while holding all other parameters fixed. Thus, for 
sufficiently large p, the slow modes are the most unstable ones, unless there is a 
transition from convective to absolute instability. For fixed 8, an increase in Q, causes 
an increase in the maximum growth rates of the fast modes, while decreasing the 
maximum growth rates of the slow modes. Finally, we have found that the phase 
speeds cph of the unstable modes lie between the phase speed of the subsonic neutral 
mode and its adjacent flame sheet neutral mode. 

3.2. M > 0 
In this section we show the variation of the phase speeds of the neutral waves and 
the maximum growth rates of the unstable waves as a function of the Mach number 
for various combinations of pT, p, and y5. 

3.2.1. Neutral modes 

In  figure 11 (a )  we show the phase speed of the neutral modes for the non-reactive 
(/3 = 0, q5 = 1 )  mixing layer (Part 1) for PT = 4. From this figure, taken from Part 1, 
one can see that there is only a single subsonic neutral mode in region 1 .  This mode 
crosses over the sonic curve a t  M,, the Mach number a t  which the phase speed equals 
that of a sonic wave, and is transformed into a supersonic neutral mode in region 4. 
In  addition, a fast supersonic neutral mode appears at M ,  in region 2. In  regions 2 
and 4 there are unstable modes with phase speeds between that of the supersonic 
neutral mode and that of the sonic neutral mode. Thus, there are two bands of 
unstable frequencies for Mach numbers greater than M*. The band in region 2 is a 
group of fast and the band in region 4 is a group of slow unstable modes. The phase 
speeds of both the fast and slow modes have a small range about the average, so that 
little dispersion of wave packets is expected, with a reduction in the dispersion as the 
Mach number is increased. 

It, can be seen from figure 11 ( b )  that chemical reaction has a major effect on cN.  
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First, recall from figure 5 ( b )  that the slow subsonic neutral mode is convectively 
unstable only for p < p, at M = 0, while the fast subsonic neutral mode only exists 
for B >, a. As can be seen from figure 4 (c), the value of p, is also a function of the Mach 
number. Thus, we find that the slow neutral mode is convectively unstable only if the 
Mach number is greater than the critical value M ,  (see figure 11 b).  Apart from this, 
the values of cN on this branch are only slightly affected by changes in /3 and the effect 
is quite small a t  large M .  Finally, one can see that a fast subsonic neutral mode is 
present for all M because /3 is greater than 0.5. Note that the values of cN for this fast 
mode in region 1 increase markedly with increasing p. This is also true for the lower 



410 

- p =  1 / \  
- 

2 

- 
- - - _ _  - -  - 

I 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I  

T. L. Jackson and C. E. Grosch 

, 

. - -  
I 

t i  
0 10 

M 

Mach number range in region 2, but all of the cN curves for different 1 appear to 
asymptote to a single curve for large M .  Associated with the fast and slow subsonic 
neutral modes there are the flame sheet neutral modes in region 1. The range of phase 
speeds of the unstable modes in region 1 lies between the fast modes and their 
associated flame sheet mode, and between the slow modes and their associated flame 
sheet mode. In regions 2 and 4, the range of phase speeds of the unstable modes lies 
between the fast (slow) supersonic neutral modes and the associated fast (slow) sonic 
neutral modes. The range of the phase speeds of the unstable modes increases with 
p and is quite large for Mach numbers around M,, thus yielding an increase in 
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dispersion. However for Mach numbers much larger than M ,  the dispersion is 
essentially independent of p. 

Figure 12 shows the phase speed of the neutral modes for PT = 1,  q5 = 1 and various 
values of p as a function of the Mach number. The results for /3 = 0 are shown in 
figure 12(a) and those for > 0 in figure 12(b). The curves of cN versus M are 
symmetric about the line cN = +because the mean velocity profile is symmetric about 
7 = 0 (where U = t )  and so is the temperature profile for any p if q5 = 1. Hence, the 
subsonic neutral mode in region 1 of figure 12 ( a )  splits into a symmetric pair of fast 
and slow supersonic modes a t  M,. From figure 12(b) it can be seen that this is also 

FLM 217 14 
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true for any non-zero $. The only exception is for sufficiently large $, where the slow 
neutral modes are convectively unstable only if the Mach number exceeds M,. For 
this case, the flame sheet neutral mode in region 1 has a phase speed of+, and the 
range of phase speeds of the unstable modes lies between this mode and the 
corresponding fast and slow neutral modes. As /? increases the phase speeds of the 
fast (slow) neutral modes increase (decrease) at any fixed M. Again i t  should be noted 
that all of the curves for both the fast and slow neutral modes at different p are 
asymptotic to a single curve for large M. As for the previous case, an increase in $ 
causes an increase in the range of the phase speeds of the unstable modes, in the 
vicinity of M,, and hence an increase in the dispersion. 

Finally, in figure 13 we show similar plots of cN versus M for PT = 2. In  figure 13 ( a ) ,  
with p =  0, there is only a subsonic fast neutral mode in region 1 which is 
transformed into a supersonic neutral mode in region 2. The slow supersonic neutral 
mode only exists in region 4. The effects of increasing p are similar to those of the 
cases discussed above. There is an increase in the phase speed of the fast modes as 
/3 is increased. The phase speed of the slow supersonic modes of region 4 decreases 
with increasing $ and, for p > 1 ,  a flame sheet neutral mode with cN = ij appears in 
region 1 .  Correspondingly, for $ > 0, there also exists a flame sheet neutral mode in 
region 1 associated with the fast modes. Again the curves for the fast and slow 
neutral modes are each asymptotic to a single curve for large M. As in the previous 
two cases, an increase in p causes an increase in the range of the phase speeds of the 
unstable waves and hence an increase in the dispersion. 

with various 
values of 4. The results can be easily summarized. As 4 increases the phase speed of 
the slow mode is unchanged, consistent with the Mach zero results (see equation 
(3.5)). The only effect is a change in the critical value of M ,  below which the mode 
is absolutely unstable; the smaller the value of q5 the smaller is the value ofM,. The 
phase speed of the fast neutral modes decreases with increasing q5. Finally, all of these 
curves appear to be asymptotic to a single curve as M +  00. 

3.2.2. Unstable modes 

In  addition to the phase speeds we have calculated the maximum growth rates of 
the unstable modes for these values of PT, $, and q5 as a function of the Mach number. 
The results are shown in figures 14-16. Again, it is important to note the changes of 
scales between these figures. 

The maximum growth rate as a function of M with PT = i, q5 = 1 and various p is 
plotted in figure 14 (a) .  For p = 0 an increase in the Mach number from zero results 
in a decrease in the growth rate of the slow mode by a factor of five to ten up to M,,  
and for higher Mach numbers the growth rate levels off and eventually begins to 
increase with increasing Mach number. An increase in p causes the growth rate of the 
slow modes to  increase, but the variation of the growth rate with M is similar to that 
for /?= 0. However, it must be recalled that, if B >  0, the slow modes are 
convectively unstable only for Mach numbers greater than M,, and this is reflected 
in the curves for /3 > 0.984. The growth rates of the fast modes are much smaller and 
increasing $ has only a slight effect on them. Figure 14(b)  contains similar results, 
but with /3 = 2 and varying 4. An increase in q5 causes an increase in the maximum 
growth rate of the slow modes and a decrease for the fast modes a t  low and moderate 
Mach numbers. At higher Mach numbers, the growth rates are essentially 
independent of q5. 

Similar results, but with PT = 1, are given in figure 15. It can be seen that the 

We have also carried out calculations of cN versus M for fixed PT and 
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FIQURE 14. (a) Plot of maximum growth rates of the fast and slow modes versus Mach number for 
BT = 0.5, p =  0, 1,2,5,  and q5 = 1 .  ( b )  Plot of maximum growth rates of the fast and slow modes 
versus Mach number for p, = 0.5, /3 = 2, and 4 = 0.5,1,2. 

effects of varying 8 on the growth rate (figure 15a) is somewhat more complex than 
for the previous case. The maximum growth rate of the slow modes at low Mach 
numbers first decreases and then increases with increasing p ,  consistent with the 
Mach zero results of figure 9. At higher Mach numbers, increasing causes a 
monotonic increase in the maximum growth rates of the slow modes. Again there is 
a five- to ten-fold decrease in the growth rates of the slow modes as the Mach number 
increases from zero to M,, and a slight increase at higher Mach numbers. Apart from 
the appearance of the fast modes at low Mach number, increasing /3 has little effect 
on their maximum growth rates. Finally, in figure 15 (b) ,  an increase in $ with fixed 

14-2 
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FIGURE 15. (a) Plot of maximum growth rates of the fast and slow modes versus Mach number for 
/3, = 1, /3 = 0, 1,2 ,5 ,  and $ = 1. ( b )  Plot of maximum growth rates of the fast and slow modes 
versus Mach number for p, = 1 ,  p =  2, and r$ = 0.5 .1 ,2 .  

0 

p results in an increase in the maximum growth rate of the fast modes and a decrease 
in the maximum growth rate of the slow modes at low and moderate Mach numbers. 
At higher Mach numbers, the growth rates are again independent of 9. 

I n  figure 16 similar results are given for PT = 2. These results are consistent with 
the Mach zero results of figure 10. In particular, figure 16(a) shows that the slow 
modes are strictly increasing and those of the fast modes are strictly decreasing with 
increasing B a t  zero Mach number. Thus, increasing p causes a substantial decrease 
in the maximum growth rates of the fast modes and a substantial increase in the 
maximum growth rates of the slow modes a t  low and moderate Mach numbers. As 



Inviscid spatial stability of a compressible mixing layer. Part 2 415 

0 

F 
L s, C = 0.5 

M 
10 

10 
M 

FIGURE 10. (a) Plot of maximum growth rates of the f u t  and slow modes versus Mach number for 
p, = 2, p = 0,1 ,2 ,5 ,  and 4 = 1 .  ( b )  Plot of maximum growth rates of the fast and slow modes 
versus Mach number for p, = 2, p =  2, and 4 = 0.5,1,2.  
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in the previous case, the results of figure 16(b)  show that increasing 4 yields an 
increase in the growth rates of the fast modes while decreasing those of the slow 
modes. As before, the growth rates of both are independent of 4 a t  higher Mach 
number. 

The results presented in figures 14-16 thus show that the maximum growth rates 
of the slow modes increase as the Mach number becomes large, while that of the fast 
modes approaches a limiting value. As we have seen, this was the same generic 
behaviour as results from increasing the heat release parameter /3 a t  zero Mach 
number. 
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Fraum 17. Plot of the two dimensional fast supersonic neutral eigenfunction U(7) along the  
contour 7 = v,-i. The solid curve corresponds to the amplitude and the dashed curve to the phase. 
M = 5, p, = 1 ,  q5 = 1, p = 0, with wN = 0.184813, aN = 0.215661, c ,  = 0.85696. 
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3.2.3. Neutral eigenfunctions 
Figures 17-20 are plots of selected two-dimensional neutral eigenfunctions for 

PT = 1, q5 = 1, Mach 5 and increasing values of p. These plots show thc variation of 
17 with 7,. on the contour vi = - 1. All of these have been normalized so that the 
maximum of the absolute value of I7 is unity. The eigenfunctions shown are all fast 
supersonic neutral modes whose phase speeds are shown in figure 12. Note the rapid 
variation of both the amplitude and phase near 7,. = 0. Because these modes are fast, 
they show exponential decay in the subsonic region and oscillations with constant 
amplitude and linear phase in the supersonic region. As /3 is increased, the variation 
of the amplitude near T~ = 0 increases markedly. Also, the decay of the amplitude in 
the subsonic region is more rapid and the rate of change of the phase in the supersonic 
region increases. The behaviour of the eigenfunction with increasing heat release, p, 
is similar to the behaviour with increasing Mach number. 

4. Conclusions 
The addition of combustion in the form of a flame sheet has important, and 

complex, effects on the flow stability. We have found that the addition of heat can 
cause the compressible mixing layer to become absolutely unstable even without any 
reversed flow. This transition occurs a t  a critical value of p (pc) which depends upon 
the Mach number, PT, and $. Thus it is possible to induce absolute instability by 
either increasing the heat release parameter P, or by decreasing the equivalence ratio 
$ (i.e. lean mixtures), holding all other parameters fixed. However, increasing the 
Mach number and/or increasing PT causes P, to increase, and thus it is possible to 
regain a convectively unstable flow. We have only reported results for modes which 
are convectively unstable. In  this flow there can be multiple groups of unstable 
waves. In  some cases, one of these is absolutely unstable and the others are 
convectively unstable. It may not be possible to observe these convectively unstable 
modes because of the presence of the absolute instability. Nevertheless we have 
reported phase speeds and growth rates for them. 

I n  contrast to the non-reacting case, we have shown the existence of multiple 
subsonic neutral modes in region 1.  For Mach numbers greater than M,, there are 
two bands of unstable frequencies (just as in the non-reacting case) ; one a group of 
fast supersonic modes and the other a group of slow supersonic modes. In  general, an 
increase in P causes an increase (decrease) in the phase speed of the fast (slow) neutral 
modes. Since the range of phase speeds is increased a t  low and moderate Mach 
numbers as the heat release parameter ,8 is increased, there is an increase in the 
dispersion of wave packets. Finally, we have found that the addition of chemical 
heating has almost no effect on the neutral phase speeds at  higher Mach numbers. 

The maximum growth rates of the unstable modes decrease by a factor of five to 
ten as the Mach number approaches M,, even with the presence of the reaction. Just 
as in the non-reacting case, for Mach numbers greater thanM,, the growth rates level 
off and those of the slow modes eventually begin to increase with increasing Mach 
number, while the growth rates of the fast modes approach a limiting value. The 
same behaviour results from increasing /3 while the Mach number is held fixed. 
Finally, if the stationary gas is colder than the moving gas, PT < 1, the effect of 
increasing the equivalence ratio q5 is to increase the growth rate of the slow modes 
and decrease the growth rate of the fast modes. On the other hand, if PT 3 1, 
increasing $ has the opposite effect. However, at higher Mach numbers, changes in 



Inviscid spatial stability of a compressible mixing layer. Part 2 419 

# have little effect on the growth rates for any PT. Finally, an examination of the 
eigenfunctions shows that increasing P has the same generic effect as increasing the 
Mach number. 

The general trends that we have found of the effect of heat release on the overall 
growth rate of the mixing layer are in agreement with the results of the studies of 
Hermanson & Dimotakis (1989) and McMurtry et al. (1989). We note that McMurtry 
et al. (1989) suggest that high rates of heat release may enhance mixing in the shear 
layer. We conjecture that this may be related to a transition from convective to 
absolute instability. 

This study is the only comprehensive study, of which we know, of the inviscid 
spatial stability of a reacting compressible mixing layer. We do not know how 
sensitive our results are to the assumptions used in this study. In  particular, we have 
assumed unit Prandtl and Lewis numbers, used Chapman’s linear relation between 
viscosity and temperature, and approximated the mean velocity profile by a 
hyperbolic tangent. I n  addition, we have taken the limit of infinite Damkohler 
number which reduces the diffusion flame to a flame sheet. Despite these limitations, 
we believe that this systematic study is an important first step in classifying and 
understanding the complex effects that  chemistry has on the stability of compressible 
free shear layers. As mentioned above, the next step is to consider a more realistic 
model of the chemistry and the thermodynamics. This will then yield mean velocity, 
temperature, and mass fraction distributions which will be continuous and have 
continuous derivatives across the flame. However the calculation of the mean field 
as well as the perturbation solution will be more difficult since now the velocity, 
temperature, and mass fraction equations are coupled. We have begun this study 
with finite Damkohler number and hope to  report the results at a later date and will 
compare those results to the benchmark results reported here. The important 
question of absolute/convective instability also needs to be re-examined. 
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Aeronautics and Space Administration under NASA Contract Nos. NAS1-18107 and 
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